Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(6): e0222523, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855642

RESUMO

IMPORTANCE: Energy generation pathways are a potential avenue for the development of novel antibiotics. However, bacteria possess remarkable resilience due to the compensatory pathways, which presents a challenge in this direction. NADH, the primary reducing equivalent, can transfer electrons to two distinct types of NADH dehydrogenases. Type I NADH dehydrogenase is an enzyme complex comprising multiple subunits and can generate proton motive force (PMF). Type II NADH dehydrogenase does not pump protons but plays a crucial role in maintaining the turnover of NAD+. To study the adaptive rewiring of energy metabolism, we evolved an Escherichia coli mutant lacking type II NADH dehydrogenase. We discovered that by modifying the flux through the tricarboxylic acid (TCA) cycle, E. coli could mitigate the growth impairment observed in the absence of type II NADH dehydrogenase. This research provides valuable insights into the intricate mechanisms employed by bacteria to compensate for disruptions in energy metabolism.


Assuntos
NADH Desidrogenase , Bombas de Próton , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Bombas de Próton/metabolismo , Escherichia coli/metabolismo , Prótons , NAD/metabolismo , Bactérias/metabolismo
2.
Angew Chem Int Ed Engl ; 62(38): e202303958, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37314332

RESUMO

Even in the modern era of precision medicine and immunotherapy, chemotherapy with platinum (Pt) drugs remains among the most commonly prescribed medications against a variety of cancers. Unfortunately, the broad applicability of these blockbuster Pt drugs is severely limited by intrinsic and/or acquired resistance, and high systemic toxicity. Considering the strong interconnection between kinetic lability and undesired shortcomings of clinical Pt drugs, we rationally designed kinetically inert organometallic Pt based anticancer agents with a novel mechanism of action. Using a combination of in vitro and in vivo assays, we demonstrated that the development of a remarkably efficacious but kinetically inert Pt anticancer agent is feasible. Along with exerting promising antitumor efficacy in Pt-sensitive as well as Pt-resistant tumors in vivo, our best candidate has the ability to mitigate the nephrotoxicity issue associated with cisplatin. In addition to demonstrating, for the first time, the power of kinetic inertness in improving the therapeutic benefits of Pt based anticancer therapy, we describe the detailed mechanism of action of our best kinetically inert antitumor agent. This study will certainly pave the way for designing the next generation of anticancer drugs for effective treatment of various cancers.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Platina/farmacologia , Platina/uso terapêutico , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Cinética , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...